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Photolysis of aryl diazo compounds and azides produces carbenes

and nitrenes, respectively, which have received extensive study by 35— :;

nanosecond (ns) time-resolved spectroscopy and other physical o10 ssonm
methodsi—3 The excited states of aryl diazo compounds have been 30 ge

recently detected by femtosecond spectroscdgrein, we report 4 .

the first observation of aryl azide excited singlet states and the
formation of the related singlet nitrenes.

In the femtosecond transient absorption experiments, the azides
were excited at 266 nm and monitored with a supercontinuum probe 15+
pulse in the spectral range of 33625 nm. The recorded spectra
were time-corrected for the chirp of the supercontiniurhe time
resolution of the system is 300 fs, as determined by the two-photon 5]
absorption of methanol in the sample cell.

Thepara- andortho-biphenyl azides were chosen for initial study | | | | | I
because of their prior study by nanosecond spectroscopy. Laser 350 400 450 200 550 600
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Flash Photolysis (LFP) opara-biphenyl azide in acetonitrile

. . . - N Figure 1. Transient absorption spectra recorded in a-1000 fs time
produces the singlet nitrene wilqax = 350 nm andr ~ 9 ns at window for para-biphenyl azide in acetonitrile. The time dependence of
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ambient temperature. the signal at 480 nm is shown in the inset.
N3—> 1N3 —N> Q N band. This pattern is characteristic of vibrational cooling (VC) of
1-p 1-p* 2 2-p species initially formed with excess vibrational enefdhe 11 ps

time constant is consistent with other reports of VC of polyatomic

Singletortho-biphenylnitrene has a sub-nanosecond lifetime at Molecules. A derivative of2-p, 3,5-dichloroertho-biphenyinitrene,
ambient temperature. LFP oftho-biphenyl azide at 77 K in glassy ~ @IS0 undergoes vibrational cooling in cyclohexane with an 11 ps

3-methylpentane produces a singlet nitrene withy = 410 nm decay timé’ _ ) _ o
andz = 59 ns under cryogenic conditiofs. Ultrafast LFP ofortho-biphenyl azidel-o in acetonitrile (o0.d.

= 0.6 at 266 nm) at ambient temperature produces the transient
266 nm -N, spectra of Figure 2. Transient absorption at 480 Afrof) is
— — formed within the laser pulse and decays with a time constant of
IN* 1-0° IN 2-0 450 + 150 fs (Figure 2a inset). As this absorption decays, a new
Ny 1-0 3 absorption at 400 nm2¢o) grows with a time constant of 286
150 fs. Singlebrtho-biphenylnitrene decays with a time constant

Ultrafast LFP of1-p (0.d. = 0.6 at 266 nm) in acetonitrile at ¢ 16 1 3 35 (Figure 2b inset). The 16 ps time constant represents
ambient temperature produces the transient spectra shown in Flgurqhe population decay time of the singlet nitrered] by isomer-

1. Thereis a broaQIy absqrbmg transient at 480, nm that forms within ization to isocarbazole and a benzazirine (and subsequently the ring
the laser pulse (Figure 1 inset) and decays with a time constant of g, o n4s to form a 1,2-didehydroazepine). There is an isosbestic
~100 fs. As the transient absorption decays at 480 nm, it grows at ine ot 435 nm. This is the first observation of singtetho-

350 nm. The latter species is readily assigne@-on the basis biphenylnitrene in solution at ambient temperature. Its lifetime is

of nanosecond time-resolved studies. The precursor of the singletShorter than that of singlet 3,5-dichloaotho-biphenylnitren (260
nitrene is an excited state of the azitig, which absorbs at 480 ps, cyclohexane: 62 ps, methanbfiay = 425 nm).
nm. ) ) . Vertical excitations and full geometry optimizations were
As expected, relaxed singlet nitrerzf) does not exhibit any performed for the different states(SS, and $) of p-biphenyl
significant population decay on the 100 ps time scale. The transientalzide using the hybrid B3LY® density functional theory method
absorption spectrum, however, of the singlet nitreéip)(undergoes and the TZVP basis Sétas implemented in Turbomole 5.72The
subtle reshaping within a few picoseconds of the laser pulse. A S, and S excited states were optimized using time-dependent DFT
decay (11 ps) is observed on the red edge (380 nm) of the absorptior}nethodology. Vertical excitations fromyS- S, and from $— S,
t Adam Mickiewicz University. were computed to occur at 287 and 272 nm, respectively, using
*The Ohio State University. the more flexible Sadlej basis $éand the former band is predicted
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Figure 2. Transient absorption spectra recorded between (&) 2380 fs
after the laser pulse and with (b}800 ps time windows foortho-biphenyl

with a ArCN—N, bond length of 1.252 A, similar to the 1.228 A
value for . Both § and S were confirmed to be minima by
evaluation of the Hessian matrix, and each state had only real
vibrational frequencies. Thus, we assign the initially detected
transient to the Sstate ofpara-biphenyl azide.

In summary, aryl azide excited singlet states have been observed
for the first time. Their short (femtosecond) but finite lifetimes
indicate that these excited state surfaces are not purely repulsive.
Aryl azide excited states decompose to form singlet aryl nitrenes
whose growth can be observed by ultrafast spectroscopy.
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